CONTINUITY

A function f(x) will be continuous at a point x = a, if there is no break or cut or hole or gap in the graph of the function y = f(x) at the point (a, f(a)). Otherwise, it is discontinuous at that point.

A function *f* is said to be continuous at the point x = a if the following conditions are satisfied :

- (i) f(a) exists.
- (ii) $\lim_{x \to a} f(x)$ exists.

(iii) $\lim_{x \to a} f(x) = f(a)$.

DISCONTINUITY OF A FUNCTION

CONTINUITY OF A FUNCTION ON AN INTERVAL

Continuity on an Open Interval

A function f(x) is said to be continuous on an open interval (a, b), if it is continuous at each point of (a, b).

Continuity on a Closed Interval

A function f(x) is said to be continuous on a closed interval [a, b] if

- (i) f(x) is continuous from right at x = a, *i.e.* $\lim_{h \to 0} f(a+h) = f(a)$
- (ii) f(x) is continuous from left at x = b, *i.e.* $\lim_{h \to 0} f(b-h) = f(b)$
- (iii) f(x) is continuous at each point of the open interval (a, b).

1.	At a point	A real valued function $f(x)$ is said to be discontinuous at $x = a$, if it is not continuous at $x = a$. The discontinuity may be due to any of the following reasons: (i) $\lim_{x \to a^{-}} f(x)$ or $\lim_{x \to a^{+}} f(x)$ or both may not exist. (ii) $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ both exist but are not equal. (iii) $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exist and are equal but both may not be equal to $f(a)$.
2.	In an interval	A real valued function $f(x)$ is said to be discontinuous if it is not continuous at atleast one point in the given interval.

TYPES OF DISCONTINUITY

1.	Removable discontinuity	$f(x)$ is said to have a removable discontinuity at $x = a$ if $\lim_{x \to a} f(x)$ exists but $\lim_{x \to a^+} f(x) \neq f(a)$ or if and only if $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \neq f(a)$	
2.	Non-removable discontinuity	$f(x) \text{ is said to have non-removabole discontinuity at } x = a;$ (i) First kind: If $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$ (ii) Second kind: If $\lim_{x \to a^{-}} f(x)$ or $\lim_{x \to a^{+}} f(x)$ or both do not exist.	

ALGEBRA OF CONTINUOUS FUNCTIONS

Let f(x) and g(x) be two continuous functions on their common domain *D* and let *c* be a real number. Then (i) f + g is continuous at x = c

(ii) f - g is continuous at x = c(iii) fg is continuous at x = c

(iv) $\frac{f}{g}$ is continuous at x = cNote :

• If *f* and *g* are real functions such that *fog* is defined and if *g* is continuous at a point *a* and *f* is continuous at *g*(*a*), then *fog* is continuous at *x* = *a*.

DIFFERENTIABILITY

Let f(x) be a real function and a be any real number. Then, we define

(i) **Right-hand derivative** : $\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$, if

it exists, is called the right-hand derivative of f(x) at x = a, and is denoted by Rf'(a).

(ii) Left-hand derivative : $\lim_{h \to 0^{-}} \frac{f(a-h) - f(a)}{-h}$, if it exists, is called the left-hand derivative of f(x) at x = a, and is denoted by Lf'(a).

A function f(x) is said to be differentiable at x = a, if Rf'(a) = Lf'(a).

The common value of Rf'(a) and Lf'(a) is denoted by f'(a) and it is known as the derivative of f(x) at x = a. If, however, $Rf'(a) \neq Lf'(a)$ we say that f(x) is not differentiable at x = a.

Note :

- *f*(*x*) is differentiable at a point *P* iff the curve does not have *P* as a corner point.
- If a function is differentiable at a point, then it is necessarily continuous at that point. But the converse is not necessarily true.
- A function *f* is said to be a differentiable function if it is differentiable at every point in its domain.

DERIVATIVE OF A FUNCTION

If a function f(x) is differentiable at every point in its domain, then

$$\lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} \text{ or } \lim_{h \to 0^{-}} \frac{f(x-h) - f(x)}{-h} \text{ is }$$

called the derivative or differentiation of *f* at *x* and is denoted by f'(x) or $\frac{d}{dx}f(x)$.

SOME PROPERTIES OF DERIVATIVE

1	Sum on Difformance	(u + u)' = u' + u'
1.	Sum of Difference	$(u \pm v) - u \pm v$
2.	Product Rule	(uv)' = u'v + uv'
3.	Quotient Rule	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \ v \neq 0$
4.	Composite Function (Chain Rule)	(a) Let $y = f(t)$ and $t = g(x)$, then $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ (b) Let $y = f(t)$, $t = g(u)$ and $u = m(x)$, then $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{du} \times \frac{du}{dx}$
5.	Parametric Function	If $x = f(t)$ and $y = g(t)$, then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}$, $f'(t) \neq 0$
6.	Second Order Derivative	Let $y = f(x)$, then $\frac{dy}{dx} = f'(x)$ If $f'(x)$ is differentiable, then $\frac{d}{dx}\left(\frac{dy}{dx}\right) = f''(x)$ or $\frac{d^2y}{dx^2} = f''(x)$
7.	Logarithmic Function	If $y = u^v$, where u and v are the functions of x , then $\log y = v \log u$. Differentiating w.r.t. x , we get $\frac{d}{dx}(u^v) = u^v \left[\frac{v}{u} \frac{du}{dx} + \log u \frac{dv}{dx} \right]$
8.	Implicit Function	Here, we differentiate the function of type $f(x, y) = 0$.

Function	Derivative	Function	Derivative	Function	Derivative
x^n	nx^{n-1}	sin x	cos x	cos x	$-\sin x$
tan <i>x</i>	$\sec^2 x$	cot <i>x</i>	$-\csc^2 x$	sec x	sec x tan x
cosec x	$-\csc x \cot x$	e^{ax}	<i>ae^{ax}</i>	e^x	e ^x
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}; x \in (-1,1)$	$\cos^{-1} x$	$\frac{-1}{\sqrt{1-x^2}}; x \in (-1,1)$	$\tan^{-1} x$	$\frac{1}{1+x^2}; x \in R$
$\cot^{-1} x$	$-\frac{1}{1+x^2}; x \in R$	$\sec^{-1} x$	$\frac{1}{ x \sqrt{x^2-1}}; x \in R-[-1, 1]$	$\csc^{-1}x$	$-\frac{1}{ x \sqrt{x^2-1}}; \ x \in R-[-1,1]$
log _e x	$\frac{1}{x}; x > 0$	a^x	$a^x \log_e a; a > 0$	$\log_a x$	$\frac{1}{x\log_e a}; x > 0 \text{ and } a > 0,$

SOME GENERAL DERIVATIVES

SOME IMPORTANT THEOREMS

Rolle's theorem

If a function f(x) is

- (i) continuous in the closed interval [a, b] i.e. continuous at each point in the interval [a, b]
- (ii) differentiable in an open interval (a, b) i.e. differentiable at each point in the open interval (a, b) and
- (iii) f(a) = f(b), then there will be at least one point *c*, in the interval (a, b) such that f'(c) = 0.

Geometrical meaning of Rolle's theorem

If the graph of a function y = f(x) be continuous at each point from the point A(a, f(a)) to the point B(b, f(b))and tangent to the graph at each point between A and B is unique *i.e.* tangent at each point between A and B exists and ordinates *i.e.* y co-ordinates of points Aand B are equal, then there will be at least one point P on the curve between A and B at which tangent will be parallel to x-axis.

Lagrange's mean value theorem

If a function f(x) is

- (i) continuous in the closed interval [a, b] i.e.continuous at each point in the interval [a, b]
- (ii) differentiable in the open interval (a, b) i.e.differentiable at each point in the interval (a, b)then there will be at least one point c, where

$$a < c < b$$
 such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Geometrical meaning of Lagrange's mean value theorem

If the graph of a function y = f(x) be continuous at each point from the point A (a, f(a)) to the point B (b, f(b))and tangent at each point between A and B exists *i.e.* tangent is unique then there will be at least one point P on the curve between A and B, where tangent will be parallel to chord AB.

Very Short Answer Type

- **1.** Discuss the continuity of the function $f(x) = \sin x - \cos x$
- 2. Differentiate cos (sin *x*) with respect to *x*.
- 3. If $xy = x^3 + y^3$, find $\frac{dy}{dx}$. 4. Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3.
- 5. Is the function defined by
 - $f(x) = \begin{cases} x, \text{if } x \le 1\\ 5, \text{ if } x > 1 \end{cases} \text{ continuous at } x = 1?$

Short Answer Type

- 6. If the function $f(x) = \begin{cases} \frac{k \cos x}{\pi 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then find the value of k.
- 7. If $y^x = e^{y^2 x}$, then find the value of $\frac{dy}{dx}$
- 8. Show that f(x) = [x] is not differentiable at x = 1.

9. If
$$y = \sqrt{e^{\sqrt{x}}}$$
, find $\frac{dy}{dx}$.
10. If $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, prove that
 $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$

Long Answer Type

11. If $y = e^x \sin x^3 + (\tan x)^x$, find $\frac{dy}{dx}$.

- 12. If $x = 3 \sin t \sin 3t$, $y = 3 \cos t \cos 3t$, find $\frac{d^2 y}{dr^2}$ at $t = \frac{\pi}{3}$.
- 13. Verify Lagrange's mean value theorem for the function f(x) = x (x - 1) (x - 2) in the interval $\left| 0, \frac{1}{2} \right|$.
- 14. (i) If $y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\frac{y}{x}\right)$, find $\frac{dy}{dx}$. (ii) If $\sqrt{x} + \sqrt{y} = 4$, find $\frac{dy}{dx}\Big|_{at x = 1}$.
- 15. (i) If Rolle's theorem hold for the function $f(x) = x^3 + bx^2 + ax + 5$ on [1, 3]

where
$$c = \left(2 + \frac{1}{\sqrt{3}}\right)$$
, find the values of *a* and *b*.

(ii) Using Rolle's theorem, find at what points on the curve $y = x^2$ on [-2, 2] is the tangent parallel to x-axis.

SOLUTIONS

- Since sin x and cos x are continuous functions and difference of two continuous functions is a continuous function, therefore $\sin x - \cos x$ *i.e.*, f(x) is a continuous function.
- **2.** Let $y = \cos(\sin x)$

Now,
$$\frac{dy}{dx} = \frac{d\{\cos(\sin x)\}}{dx}$$

= $-\sin(\sin x) \cdot \cos x = -\cos x \sin(\sin x)$

3. Given, $xy = x^3 + y^3$ Differentiating w.r.t. x, we get

$$\frac{d}{dx}(xy) = \frac{d}{dx}(x^3) + \frac{d}{dx}(y^3)$$

or $1 \cdot y + x \cdot \frac{dy}{dx} = 3x^2 + 3y^2 \frac{dy}{dx}$

$$\Rightarrow (x - 3y^2) \frac{dy}{dx} = 3x^2 - y \Rightarrow \frac{dy}{dx} = \frac{3x^2 - y}{x - 3y^2}$$

4.
$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x^2 - 1) = 17$$
$$f(3) = 17$$

 \therefore *f* is continuous at x = 3.

5. At
$$x = 1$$
,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} x = 1$$
,
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} 5 = 5$$

$$\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

$$\therefore f \text{ is discontinuous at } x = 1.$$
6. Here, $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{ if } x \neq \frac{\pi}{2} \\ 3, & \text{ if } x = \frac{\pi}{2} \end{cases}$

$$\therefore \text{ L.H.L.} = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = \lim_{h \to 0} \frac{k \sin h}{2h}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$
R.H.L. =
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos (\pi - 1)}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos (\pi - 1)}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to \left(\frac{\pi}{2}\right)^{+} \frac{k \cos x}{\pi - 2x}$$

$$= \lim_{x \to$$

7. Here, $y^x = e^{y-x}$ Taking log on both sides, we get $\log y^x = \log e^{y-x}$ $\Rightarrow x \log y = (y - x) \log e \Rightarrow x \log y = y - x ...(i)$ On differentiating w.r.t. *x*, we get

$$\left\lfloor x \frac{d}{dx} (\log y) + \log y \frac{d}{dx} (x) \right\rfloor = \frac{dy}{dx} - 1$$
(Using product rule)

$$\Rightarrow x\left(\frac{1}{y}\right)\frac{dy}{dx} + \log y(1) = \frac{dy}{dx} - 1$$

$$\Rightarrow \frac{dy}{dx}\left(\frac{x}{y} - 1\right) = -1 - \log y$$

$$\Rightarrow \frac{dy}{dx}\left[\frac{y}{(1 + \log y)y} - 1\right] = -(1 + \log y)$$

$$\Rightarrow \left[\because \text{ from (i), } x = \frac{y}{(1 + \log y)}\right]$$

$$\Rightarrow \frac{dy}{dx}\left[\frac{1 - 1 - \log y}{1 + \log y}\right] = -(1 + \log y)$$

$$\Rightarrow \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}$$

8. We have,
$$Rf'(1) = \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0^+} \frac{[1+h] - [1]}{h} = 0 \quad (\because [1+h] = 1 \text{ and } [1] = 1)$$
and $Lf'(1) = \lim_{h \to 0^-} \frac{f(1-h) - f(1)}{-h}$

$$= \lim_{h \to 0^-} \frac{[1-h] - [1]}{-h} = \infty$$
 $\{\because [1-h] = 0 \text{ and } [1] = 1\}.$

Thus
$$Rf'(1) \neq Lf'(1)$$
.
Hence, $f(x) = [x]$ is not differentiable at $x = 1$.
9. Putting $\sqrt{x} = t, e^{\sqrt{x}} = e^t = u$

Putting
$$\sqrt{x} = t, e^{\sqrt{x}} = e^{t} = u$$
 ...(i)
we get, $y = \sqrt{e^{\sqrt{x}}} = \sqrt{u}$
 $\Rightarrow \frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}, \quad \because u = e^{t} \Rightarrow \frac{du}{dt} = e^{t}$
and $t = \sqrt{x} \Rightarrow \frac{dt}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
 $\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right)$
 $= \left(\frac{1}{2\sqrt{u}} \times e^{t} \times \frac{1}{2\sqrt{x}}\right) = \left\{\frac{1}{2\sqrt{u}} \times u \times \frac{1}{2\sqrt{x}}\right\}$
 $= \frac{\sqrt{u}}{4\sqrt{x}} = \frac{e^{\frac{1}{2}t}}{4\sqrt{x}} = \frac{e^{\frac{1}{2}\sqrt{x}}}{4\sqrt{x}}$ (Using (i))

10. We have, $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$...(i) Putting $x = \sin \theta$ and $y = \sin \phi$ in (i), we get $\sin \theta \cos \phi + \cos \theta \sin \phi = 1$ $\Rightarrow \sin (\theta + \phi) = 1 \Rightarrow (\theta + \phi) = \sin^{-1} (1)$

$$\Rightarrow \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \qquad \dots (ii)$$

On differentiating both sides of (ii) w.r.t. x, we get

$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}.$$

11. Let $u = e^x \sin x^3$ and $v = (\tan x)^x$
Now, $u = e^x \sin x^3$
Differentiating w.r.t. x , we get

$$\frac{du}{dx} = e^x \cdot \frac{d\left\{\sin(x)^3\right\}}{dx} + \sin x^3 \cdot \frac{d}{dx} (e^x)$$

$$= e^x \cdot \cos x^3 \cdot 3x^2 + \sin x^3 \cdot e^x$$
Hence, $\frac{du}{dx} = 3x^2 \cdot e^x \cos x^3 + e^x \sin x^3$
Again, $v = (\tan x)^x$ $\therefore \log v = x \log (\tan x)$

Again, $v = (\tan x)^x$ \therefore log $v = x \log$ (tan Differentiating w.r.t. *x*, we get

$$\frac{1}{v}\frac{dv}{dx} = 1 \cdot \log(\tan x) + x \cdot \frac{1}{\tan x}\sec^2 x$$

$$\therefore \quad \frac{dv}{dx} = v \left[\log(\tan x) + x \cot x \cdot \sec^2 x\right]$$
$$= (\tan x)^x \left[\log(\tan x) + x \cot x \sec^2 x\right]$$

Now,
$$y = u + v \implies \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\Rightarrow \frac{dy}{dx} = 3x^2 e^x \cos(x^3) + e^x \sin(x^3) + (\tan x)^x [\log(\tan x) + x \cot x \sec^2 x]$$

12.
$$x = 3 \sin t - \sin 3t \implies \frac{dx}{dt} = 3 \cos t - 3 \cos 3t \dots$$
(i)
 $y = 3 \cos t - \cos 3t \implies \frac{dy}{dt} = -3 \sin t + 3 \sin 3t \dots$ (ii)

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin 3t - \sin t}{\cos t - \cos 3t} [\text{Dividing (ii) by (i)}]$$
$$= \frac{2\cos 2t \sin t}{2\sin 2t \sin t} = \cot(2t)$$
Differentiating w.r.t. x, we get

$$\frac{d^{2}y}{dx^{2}} = -2\csc^{2}2t \cdot \frac{dt}{dx}$$

= -2\cosec^{2}2t \cdot \frac{1}{3(\cos t - \cos 3t)} [From (i)]
At $t = \frac{\pi}{3}, \frac{d^{2}y}{dx^{2}} = -2\csc^{2}\frac{2\pi}{3} \cdot \frac{1}{3\left(\cos\frac{\pi}{3} - \cos\frac{3\pi}{3}\right)}$

1+

 d^2

$$= -2\left(\frac{2}{\sqrt{3}}\right)^{2} \cdot \frac{1}{3\left(\frac{1}{2}+1\right)} = -\frac{16}{27}$$

13. Given
$$f(x) = x(x - 1)(x - 2) = x(x^2 - 3x + 2)$$
 ...(i)
∴ $f'(x) = 1$. $(x^2 - 3x + 2) + x(2x - 3)$
 $= 3x^2 - 6x + 2$...(ii)

Clearly, f'(x) is finite and unique for all x and hence f(x) is differentiable as well as continuous for all x. Hence, f(x) is continuous in $\left| 0, \frac{1}{2} \right|$. Also, f(x) is differentiable in $\left(0, \frac{1}{2}\right)$ Hence all conditions of Lagrange's mean value theorem are satisfied for f(x) in $\left| 0, \frac{1}{2} \right|$. From (i), $f(0) = 0, f\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right) = \frac{3}{8}$ Now, $f'(c) = \frac{f(\frac{1}{2}) - f(0)}{\frac{1}{2} - 0}$ $\Rightarrow 3c^2 - 6c + 2 = \frac{\frac{3}{8} - 0}{1} = \frac{3}{4}$ $\Rightarrow 12c^2 - 24c + 8 = 3^2 \Rightarrow 12c^2 - 24c + 5 = 0$ $\therefore c = \frac{24 \pm \sqrt{576 - 240}}{24} = 1 \pm \frac{\sqrt{21}}{4}$ Hence, $c = 1 + \frac{\sqrt{21}}{6}, 1 - \frac{\sqrt{21}}{6}$ But $0 < c < \frac{1}{2}$: $c = 1 - \frac{\sqrt{21}}{6}$ Thus, there exists at least one c $\left(=1-\frac{\sqrt{21}}{6}\right)$ in $\left(0,\frac{1}{2}\right)$ such that $f'(c) = \frac{f\left(\frac{1}{2}\right) - f(0)}{\frac{1}{2} - 0}$

Thus, Lagrange's mean value theorem has been verified.

14. (i) We have,
$$y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right)$$

$$\Rightarrow \frac{y}{b} = \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right)$$

$$\Rightarrow \tan \frac{y}{b} = \frac{x}{a} + \tan^{-1} \frac{y}{x}$$

Differentiating both sides with respect to *x*, we get

$$\frac{1}{b}\sec^{2}\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{1}{1+(y/x)^{2}}\frac{d}{dx}\left(\frac{y}{x}\right)$$

$$\Rightarrow \frac{1}{b}\sec^{2}\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{x^{2}}{x^{2}+y^{2}}\frac{x\frac{dy}{dx} - y(1)}{x^{2}}$$

$$\Rightarrow \frac{1}{b}\sec^{2}\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{x}{x^{2}+y^{2}}\frac{dy}{dx} - \frac{y}{x^{2}+y^{2}}$$

$$\Rightarrow \left(\frac{1}{b}\sec^{2}\frac{y}{b} - \frac{x}{x^{2}+y^{2}}\right)\frac{dy}{dx} = \frac{1}{a} - \frac{y}{x^{2}+y^{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{a} - \frac{y}{x^{2}+y^{2}}}{\frac{1}{b}\sec^{2}\frac{y}{b} - \frac{x}{x^{2}+y^{2}}}$$

(ii) We have, $\sqrt{x} + \sqrt{y} = 4$...(i)

Differentiating both sides with respect to *x*, we get

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \Longrightarrow \frac{1}{2\sqrt{y}}\frac{dy}{dx} = \frac{-1}{2\sqrt{x}}$$
$$\Longrightarrow \quad \frac{dy}{dx} = -\sqrt{\frac{y}{x}}$$

Putting x = 1 in (i), we get

$$\sqrt{1} + \sqrt{y} = 4 \implies \sqrt{y} = 4 - 1 = 3 \implies y = 9$$

$$\therefore \left. \frac{dy}{dx} \right|_{(1,9)} = -\sqrt{\frac{9}{1}} = -3.$$

15. (i) We have

$$f(x) = x^{3} + bx^{2} + ax + 5, x \in [1, 3]$$

$$\Rightarrow f'(x) = 3x^{2} + 2bx + a$$
Since Rolle's theorem holds for the function,

$$\therefore f'(c) = 0 \Rightarrow 3c^{2} + 2bc + a = 0$$

$$\Rightarrow c = \frac{-2b \pm \sqrt{4b^{2} - 12a}}{6} = \frac{-b \pm \sqrt{b^{2} - 3a}}{3}$$

$$\Rightarrow 2 + \frac{1}{\sqrt{3}} = \frac{-b \pm \sqrt{b^{2} - 3a}}{3}$$

$$\Rightarrow 2 + \frac{1}{\sqrt{3}} = -\frac{b}{3} + \frac{\sqrt{b^{2} - 3a}}{3}$$

$$\Rightarrow 2 + \frac{1}{\sqrt{3}} = -\frac{b}{3} + \frac{\sqrt{b^{2} - 3a}}{3}$$

$$\Rightarrow 2 = -\frac{b}{3} \text{ and } \frac{\sqrt{b^{2} - 3a}}{3} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow b = -6 \text{ and } b^{2} - 3a = 3$$

$$\Rightarrow b = -6 \text{ and } a = 11$$
(ii) Let $f(x) = x^{2}$
(a) $f(x) = x^{2}$, being a polynomial, is a continuous function on $[-2, 2]$.

(b) f'(x) = 2x which exists in (-2, 2) $\therefore f(x)$ is derivable in (-2 2).

(c) Also, f(-2) = f(2) = 4Thus, all the conditions of Rolle's theorem are satisfied. Hence there must exist at least one value $c \in (-2, 2)$ such that f'(c) = 0. Now, $f'(c) = 0 \Rightarrow 2c = 0$ [$\because f'(x) = 2x$] $\Rightarrow c = 0 \in (-2, 2)$ Thus, the tangent to the sume is perclicit to

Thus, the tangent to the curve is parallel to x-axis at x = 0.

At
$$x = 0, y = 0.$$
 [:: $y = x^2$]

 \therefore Tangent to the curve $y = x^2$ is parallel to x-axis at (0,0).