Continuity

A function $f(x)$ will be continuous at a point $x = a$, if there is no break or cut or hole or gap in the graph of the function $y = f(x)$ at the point $(a, f(a))$. Otherwise, it is discontinuous at that point.

A function *f* is said to be continuous at the point $x = a$ if the following conditions are satisfied :

- (i) *f*(*a*) exists.
- (ii) $\lim_{x \to a} f(x)$ exists.
- (iii) $\lim_{x \to a} f(x) = f(a)$.

CONTINUITY OF A FUNCTION ON AN INTERVAL Continuity on an Open Interval

A function $f(x)$ is said to be continuous on an open interval (a, b) , if it is continuous at each point of (a, b) .

Continuity on a Closed Interval

CBSE XII **CONTINUITY & DIFFERENTIABILITY**

A function $f(x)$ is said to be continuous on a closed interval [*a*, *b*] if

- (i) $f(x)$ is continuous from right at $x = a$, *i.e.* $\lim_{h \to 0} f(a+h) = f(a)$ 0
- (ii) $f(x)$ is continuous from left at $x = b$, *i.e.* $\lim_{h \to 0} f(b-h) = f(b)$
- (iii) *f*(*x*) is continuous at each point of the open interval (*a*, *b*).

types Of DIsCOntInuIty

DISCONTINUITY OF A FUNCTION

algebra of Continuous funCtions

Let $f(x)$ and $g(x)$ be two continuous functions on their common domain *D* and let *c* be a real number. Then

(i) $f + g$ is continuous at $x = c$ (ii) $f - g$ is continuous at $x = c$ (iii) *fg* is continuous at $x = c$ (iv) $\frac{f}{g}$ is continuous at $x = c$ **note :**

^z If *f* and *g* are real functions such that *fog* is defined and if *g* is continuous at a point *a* and *f* is continuous at $g(a)$, then *fog* is continuous at $x = a$.

Differentiability

Let $f(x)$ be a real function and a be any real number. Then, we define

(i) **Right-hand derivative :** $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ *h* $f(a+h) - f(a)$ \rightarrow 0⁺ h $+h$) – 0 , if

it exists, is called the right-hand derivative of $f(x)$ at $x = a$, and is denoted by $Rf'(a)$.

(ii) Left-hand derivative : $\lim \frac{f(a-h)-f(a)}{h}$ *h* $f(a-h) - f(a)$ $\rightarrow 0^ -h$ $-h$) – $\int_{0^{-}}^{\frac{\pi}{2}} \frac{f(t+h)-f(t)}{-h}$, if it exists, is called the left-hand derivative of $f(x)$ at $x = a$, and is denoted by *Lf'* (*a*).

A function $f(x)$ is said to be differentiable at $x = a$, if $Rf'(a) = Lf'(a)$.

The common value of *Rf* ′(*a*) and *Lf* ′(a) is denoted by $f'(a)$ and it is known as the derivative of $f(x)$ at $x = a$. If, however, $Rf'(a) \neq Lf'(a)$ we say that $f(x)$ is not differentiable at $x = a$.

Note:

- $f(x)$ is differentiable at a point *P* iff the curve does not have *P* as a corner point.
- If a function is differentiable at a point, then it is necessarily continuous at that point. But the converse is not necessarily true.
- ^z A function *f* is said to be a differentiable function if it is differentiable at every point in its domain.

DERIVATIVE OF A FUNCTION

If a function $f(x)$ is differentiable at every point in its domain, then

$$
\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}
$$
 or
$$
\lim_{h \to 0^-} \frac{f(x-h) - f(x)}{-h}
$$
 is

called the derivative or differentiation of *f* at *x* and is denoted by $f'(x)$ or $\frac{d}{dx}f(x)$.

1. Sum or Difference $(u \pm v)' = u' \pm v'$ 2. Product Rule $(uv)' = u'v + uv'$ 3. Quotient Rule $\begin{pmatrix} u' & u'v-u \end{pmatrix}$ *v* $\nu - uv$ *v* ſ $\left(\frac{u}{v}\right)$ $\int_{0}^{\prime} = \frac{u'v - uv'}{v^2}$, $v \neq 0$ 4. Composite Function (Chain Rule) (a) Let $y = f(t)$ and $t = g(x)$, then $\frac{dy}{dx}$ *dx dy dt dt dx* $=\frac{dy}{dx}$ \times (b) Let $y = f(t)$, $t = g(u)$ and $u = m(x)$, then $\frac{dy}{dx}$ *dx dy dt dt du du dx* $=\frac{dy}{dx}\times\frac{du}{dx}\times$ 5. Parametric Function If $x = f(t)$ and $y = g(t)$, then $\frac{dy}{dt}$ *dx dy dt dx dt* $=\frac{dy}{dx} / \frac{dt}{dt} = \frac{g'(t)}{f'(t)}, f'(t) \neq$ $\frac{f(t)}{f(t)}, f'(t) \neq 0$ 6. Second Order Derivative Let $y = f(x)$, then $\frac{dy}{dx} = f'(x)$ If $f'(x)$ is differentiable, then $\frac{d}{dx}$ *dx* $\left(\frac{dy}{dx}\right) = f''(x)$ or $\frac{d^2y}{dx^2}$ *f x* 2 $\frac{y}{2} = f''(x)$ 7. Logarithmic Function If $y = u^{\nu}$, where *u* and *v* are the functions of *x*, then $\log y = v \log u$. Differentiating w.r.t. *x*, we get *d dx* $(u^{\nu}) = u^{\nu} \left| \frac{\nu}{\nu} \right|$ *u du dx* $u \frac{dv}{d}$ *dx* $(u^{\nu}) = u^{\nu} \left| \frac{\nu du}{\nu} + \log \right|$ $\frac{v}{u}\frac{du}{dx} + \log u \frac{dv}{dx}$ 8. Implicit Function Here, we differentiate the function of type $f(x, y) = 0$.

sOme pROpeRtIes Of DeRIvatIve

sOme GeneRaL DeRIvatIves

some important theorems

Rolle's theorem

If a function $f(x)$ is

- (i) continuous in the closed interval [*a*, *b*] *i.e*. continuous at each point in the interval [*a*, *b*]
- (ii) differentiable in an open interval (*a*, *b*) *i.e*. differentiable at each point in the open interval (*a*, *b*) and
- (iii) $f(a) = f(b)$, then there will be at least one point *c*, in the interval (a, b) such that $f'(c) = 0$.

Geometrical meaning of Rolle's theorem

If the graph of a function $y = f(x)$ be continuous at each point from the point $A(a, f(a))$ to the point $B(b, f(b))$ and tangent to the graph at each point between *A* and *B* is unique *i*.*e*. tangent at each point between *A* and *B* exists and ordinates *i*.*e*. *y* co-ordinates of points *A* and *B* are equal, then there will be at least one point *P* on the curve between *A* and *B* at which tangent will be parallel to *x*-axis.

Lagrange's mean value theorem

If a function $f(x)$ is

- (i) continuous in the closed interval [*a*, *b*] *i.e*. continuous at each point in the interval [*a*, *b*]
- (ii) differentiable in the open interval (*a*, *b*) *i.e*. differentiable at each point in the interval (*a*, *b*) then there will be at least one point *c*, where

$$
a < c < b \text{ such that } f'(c) = \frac{f(b) - f(a)}{b - a}
$$

Geometrical meaning of Lagrange's mean value theorem

If the graph of a function $y = f(x)$ be continuous at each point from the point *A* $(a, f(a))$ to the point *B* $(b, f(b))$ and tangent at each point between *A* and *B* exists *i.e*. tangent is unique then there will be at least one point *P* on the curve between *A* and *B*, where tangent will be parallel to chord *AB*.

Very Short Answer Type

- **1.** Discuss the continuity of the function $f(x) = \sin x - \cos x$
- **2.** Differentiate cos (sin *x*) with respect to *x*.
- **3.** If $xy = x^3 + y^3$, find $\frac{dy}{dx}$.
- **4.** Examine the continuity of the function $f(x) = 2x^2 - 1$ at $x = 3$.
- **5.** Is the function defined by
	- *f x* x , if x $f(x) = \begin{cases} x, \text{if } x \leq 1, \\ 5, \text{if } x > 1. \end{cases}$ $\left\vert \right\vert$ $\left\{ \right.$ $\overline{\mathcal{L}}$ if if 1 5, if $x > 1$ continuous at *x* = 1?

Short Answer Type

- **6.** If the function $f(x) =$ $k \cos x$ *x x x* $\frac{\cos x}{2}$, , π π π $\frac{\cos x}{-2x}$, if $x \ne$ = $\left\lceil \right\rceil$ $\left\{\right\}$ \mathfrak{r} $\overline{}$ $\overline{\mathcal{L}}$ $2x^2$ 2 3 2 if if is continuous at $x = \frac{\pi}{4}$ 2 , then find the value of *k.*
- **7.** If $y^x = e^{y-x}$, then find the value of $\frac{dy}{dx}$. *x*
- **8.** Show that $f(x) = [x]$ is not differentiable at $x = 1$.

9. If
$$
y = \sqrt{e^{\sqrt{x}}}
$$
, find $\frac{dy}{dx}$.
\n10. If $x\sqrt{1 - y^2} + y\sqrt{1 - x^2} = 1$, prove that
\n
$$
\frac{dy}{dx} = -\sqrt{\frac{1 - y^2}{1 - x^2}}
$$

Long Answer Type

11. If $y = e^x \sin x^3 + (\tan x)^x$, find $\frac{dy}{dx}$.

- **12.** If $x = 3 \sin t \sin 3t$, $y = 3 \cos t \cos 3t$, find $\frac{d^2y}{dx^2}$ $\frac{2y}{2}$ at *t* $2 \frac{\pi i}{3}$ at $t = \frac{\pi}{2}$.
- **13.** Verify Lagrange's mean value theorem for the function $f(x) = x (x - 1) (x - 2)$ in the interval $0, \frac{1}{2}$ 2 $\Big|0,$ $\left[0,\frac{1}{2}\right].$
- **14.** (i) If $y = b \tan^{-1} \left(\frac{x}{x} \right)$ *a y x dy dx* $\left(\frac{x}{a} + \tan^{-1} \frac{y}{x}\right)$, find $\frac{dy}{dx}$. (ii) If $\sqrt{x} + \sqrt{y} = 4$, find at $\overline{x} + \sqrt{y} = 4$, find $\frac{dy}{dx}$ $\left. dx \right|_{\text{at } x}$ $+\sqrt{y}$ = = 4 1 *.*
- **15.** (i) If Rolle's theorem hold for the function $f(x) = x^3 + bx^2 + ax + 5$ on [1, 3]

where
$$
c = \left(2 + \frac{1}{\sqrt{3}}\right)
$$
, find the values of *a* and *b*.

(ii) Using Rolle's theorem, find at what points on the curve $y = x^2$ on $[-2, 2]$ is the tangent parallel to *x*-axis.

SOLUTIONS

- **1.** Since sin *x* and cos *x* are continuous functions and difference of two continuous functions is a continuous function, therefore sin $x - \cos x$ *i.e.*, $f(x)$ is a continuous function.
- 2. Let $y = \cos(\sin x)$

Now,
$$
\frac{dy}{dx} = \frac{d\{\cos(\sin x)\}}{dx}
$$

= $-\sin(\sin x) \cdot \cos x = -\cos x \sin(\sin x)$

3. Given, $xy = x^3 + y^3$ Differentiating w.r.t. *x*, we get

$$
\frac{d}{dx}(xy) = \frac{d}{dx}(x^3) + \frac{d}{dx}(y^3)
$$

or $1 \cdot y + x \cdot \frac{dy}{dx} = 3x^2 + 3y^2 \frac{dy}{dx}$

$$
\Rightarrow (x - 3y^2) \frac{dy}{dx} = 3x^2 - y \Rightarrow \frac{dy}{dx} = \frac{3x^2 - y}{x - 3y^2}
$$

4.
$$
\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x^2 - 1) = 17
$$

f(3) = 17

 \therefore *f* is continuous at $x = 3$.

5. At
$$
x = 1
$$
,
\n
$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x = 1, \quad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} 5 = 5
$$
\n
$$
\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)
$$
\n
$$
\therefore f \text{ is discontinuous at } x = 1.
$$
\n6. Here, $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ \n
$$
\therefore L.H.L. = \lim_{x \to (\frac{\pi}{2})^{-}} f(x) = \lim_{x \to (\frac{\pi}{2})^{-}} \frac{k \cos x}{\pi - 2x}
$$
\n
$$
= \lim_{h \to 0} \frac{k \cos(\frac{\pi}{2} - h)}{\pi - 2(\frac{\pi}{2} - h)} = \lim_{h \to 0} \frac{k \sin h}{2h}
$$
\n
$$
= \lim_{h \to 0} \frac{k}{2} \times \frac{\sin h}{h} = \frac{k}{2} \times 1 = \frac{k}{2} \quad (\because \lim_{x \to 0} \frac{\sin x}{x} = 1)
$$
\nR.H.L. = $\lim_{x \to (\frac{\pi}{2})^{+}} f(x) = \lim_{x \to (\frac{\pi}{2})^{+}} \frac{k \cos x}{\pi - 2x}$
\n
$$
= \lim_{h \to 0} \frac{k \cos(\frac{\pi}{2} + h)}{\pi - 2(\frac{\pi}{2} + h)} = \lim_{h \to 0} \frac{-k \sin h}{-2h}
$$
\n
$$
= \lim_{h \to 0} \frac{k}{2} \times \frac{\sin h}{h} = \frac{k}{2} \times 1 = \frac{k}{2} \quad (\because \lim_{x \to 0} \frac{\sin x}{x} = 1)
$$
\nAlso, $f(\frac{\pi}{2}) = 3$.
\nSince, $f(x)$ is continuous at $x = \frac{\pi}{2}$

 \therefore L.H.L. = R.H.L. = $f\left(\frac{\pi}{2}\right) \Rightarrow \frac{k}{2} = 3 \Rightarrow k =$ 2) 2 $3 \Rightarrow k = 6$

7. Here, $y^x = e^{y-x}$ Taking log on both sides, we get $\log y^x = \log e^{y-x}$ \Rightarrow *x* log *y* = (*y* – *x*) log $e \Rightarrow x \log y = y - x$...(i) On differentiating w.r.t. *x*, we get

$$
\[x \frac{d}{dx} (\log y) + \log y \frac{d}{dx} (x) \] = \frac{dy}{dx} - 1
$$
\n(Using product rule)

$$
\Rightarrow x\left(\frac{1}{y}\right)\frac{dy}{dx} + \log y(1) = \frac{dy}{dx} - 1
$$

\n
$$
\Rightarrow \frac{dy}{dx}\left(\frac{x}{y} - 1\right) = -1 - \log y
$$

\n
$$
\Rightarrow \frac{dy}{dx}\left[\frac{y}{(1 + \log y)y} - 1\right] = -(1 + \log y)
$$

\n
$$
\Rightarrow \left[\because \text{ from (i), } x = \frac{y}{(1 + \log y)}\right]
$$

\n
$$
\Rightarrow \frac{dy}{dx}\left[\frac{1 - 1 - \log y}{1 + \log y}\right] = -(1 + \log y)
$$

\n
$$
\Rightarrow \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}
$$

8. We have,
$$
Rf'(1) = \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}
$$

\n
$$
= \lim_{h \to 0^+} \frac{[1+h] - [1]}{h} = 0 \quad (\because [1+h] = 1 \text{ and } [1] = 1)
$$
\nand $Lf'(1) = \lim_{h \to 0^-} \frac{f(1-h) - f(1)}{-h}$
\n
$$
= \lim_{h \to 0^-} \frac{[1-h] - [1]}{-h} = \infty
$$
\n
$$
\{\because [1-h] = 0 \text{ and } [1] = 1\}.
$$
\nThus $Rf'(1) \neq Lf'(1)$.

Hence,
$$
f(x) = [x]
$$
 is not differentiable at $x = 1$.

9. Putting
$$
\sqrt{x} = t
$$
, $e^{\sqrt{x}} = e^t = u$...(i)
\nwe get, $y = \sqrt{e^{\sqrt{x}}} = \sqrt{u}$
\n $\Rightarrow \frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}$, $\therefore u = e^t \Rightarrow \frac{du}{dt} = e^t$
\nand $t = \sqrt{x} \Rightarrow \frac{dt}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
\n $\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right)$
\n $= \left(\frac{1}{2\sqrt{u}} \times e^t \times \frac{1}{2\sqrt{x}}\right) = \left\{\frac{1}{2\sqrt{u}} \times u \times \frac{1}{2\sqrt{x}}\right\}$
\n $= \frac{\sqrt{u}}{4\sqrt{x}} = \frac{e^{\frac{1}{2}t}}{4\sqrt{x}} = \frac{e^{\frac{1}{2}t\sqrt{x}}}{4\sqrt{x}}$ (Using (i))

10. We have, $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$...(i) Putting $x = \sin \theta$ and $y = \sin \phi$ in (i), we get $\sin \theta \cos \phi + \cos \theta \sin \phi = 1$ \Rightarrow sin $(\theta + \phi) = 1$ \Rightarrow $(\theta + \phi) = \sin^{-1}(1)$

$$
\Rightarrow \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \quad \text{...(ii)}
$$

On differentiating both sides of (ii) w.r.t. *x*, we get

$$
\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}.
$$

11. Let $u = e^x \sin x^3$ and $v = (\tan x)^x$ Now, $u = e^x \sin x^3$

Differentiating w.r.t. x, we get
\n
$$
\frac{du}{dx} = e^x \cdot \frac{d \{\sin(x)^3\}}{dx} + \sin x^3 \cdot \frac{d}{dx} (e^x)
$$
\n
$$
= e^x \cdot \cos x^3 \cdot 3x^2 + \sin x^3 \cdot e^x
$$
\nHence, $\frac{du}{dx} = 3x^2 \cdot e^x \cos x^3 + e^x \sin x^3$
\nAgain, $v = (\tan x)^x \therefore \log v = x \log (\tan x)$
\nDifferentiating w.r.t. x, we get
\n
$$
\frac{1}{v} \frac{dv}{dx} = 1 \cdot \log(\tan x) + x \cdot \frac{1}{\tan x} \sec^2 x
$$
\n
$$
\therefore \frac{dv}{dx} = v [\log (\tan x) + x \cot x \cdot \sec^2 x]
$$
\n
$$
= (\tan x)^x [\log (\tan x) + x \cot x \sec^2 x]
$$
\nNow, $y = u + v \implies \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$
\n
$$
\implies \frac{dy}{dx} = 3x^2 e^x \cos (x^3) + e^x \sin (x^3) + (\tan x)^x [\log(\tan x) + x \cot x \sec^2 x]
$$
\n12. $x = 3 \sin t - \sin 3t \implies \frac{dx}{dt} = 3 \cos t - 3 \cos 3t \dots$ (i)
\n $y = 3 \cos t - \cos 3t \implies \frac{dy}{dt} = -3 \sin t + 3 \sin 3t \dots$ (ii)
\n
$$
\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin 3t - \sin t}{\cos t - \cos 3t} [\text{Dividing (ii) by (i)}]
$$
\n
$$
= \frac{2 \cos 2t \sin t}{2 \sin 2t \sin t} = \cot(2t)
$$
\nDifferentiating w.r.t. x, we get
\n
$$
\frac{d^2y}{dx^2} = -2 \csc^2 2t \cdot \frac{1}{dx}
$$
\n
$$
= -2 \csc^2 2t \cdot \frac{1}{3(\cos t - \cos 3t)} [\text{From (i)}]
$$
\nAt $t = \frac{\pi}{3}, \frac{d^2y}{dx^2} = -2 \csc^2$

13. Given
$$
f(x) = x(x - 1)(x - 2) = x(x^2 - 3x + 2)
$$
 ...(i)
\n
$$
\therefore f'(x) = 1. (x^2 - 3x + 2) + x(2x - 3)
$$
\n
$$
= 3x^2 - 6x + 2
$$
\n...(ii)

Clearly, $f'(x)$ is finite and unique for all x and hence $f(x)$ is differentiable as well as continuous for all *x*.

Hence,
$$
f(x)
$$
 is continuous in $\left[0, \frac{1}{2}\right]$.
\nAlso, $f(x)$ is differentiable in $\left(0, \frac{1}{2}\right)$
\nHence all conditions of Lagrange's mean value
\ntheorem are satisfied for $f(x)$ in $\left[0, \frac{1}{2}\right]$.
\nFrom (i), $f(0) = 0, f\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right) = \frac{3}{8}$
\nNow, $f'(c) = \frac{f\left(\frac{1}{2}\right) - f(0)}{\frac{1}{2} - 0}$
\n $\Rightarrow 3c^2 - 6c + 2 = \frac{\frac{3}{8} - 0}{\frac{1}{2}} = \frac{3}{4}$
\n $\Rightarrow 12c^2 - 24c + 8 = 3 \Rightarrow 12c^2 - 24c + 5 = 0$
\n $\therefore c = \frac{24 \pm \sqrt{576 - 240}}{24} = 1 \pm \frac{\sqrt{21}}{6}$
\nHence, $c = 1 + \frac{\sqrt{21}}{6}, 1 - \frac{\sqrt{21}}{6}$
\nBut $0 < c < \frac{1}{2}$ $\therefore c = 1 - \frac{\sqrt{21}}{6}$
\nThus, there exists at least one $c = 1 - \frac{\sqrt{21}}{6}$
\nThus, there exists at least one $c = \left(1 - \frac{\sqrt{21}}{6}\right)$ in
\n $\left(0, \frac{1}{2}\right)$ such that $f'(c) = \frac{f\left(\frac{1}{2}\right) - f(0)}{\frac{1}{2} - 0}$
\nThus, Lagrange's mean value theorem has been verified.

14. (i) We have, $y = b \tan^{-1} \left(\frac{x}{a} \right)$ *y x* $\frac{x}{-}$ $\left(\frac{x}{a} + \tan^{-1} \frac{y}{x}\right)$ $\Rightarrow \frac{y}{b} = \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\frac{y}{x}\right)$ *x a y x* $\tan^{-1}\left(\frac{x}{-} + \tan^{-1}\right)$ \Rightarrow tan $\frac{y}{1} = \frac{x}{x} + \tan^{-1}$ *b x a y x* 1

Differentiating both sides with respect to *x*, we get

$$
\frac{1}{b}\sec^2\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{1}{1 + (y/x)^2}\frac{d}{dx}\left(\frac{y}{x}\right)
$$

\n
$$
\Rightarrow \frac{1}{b}\sec^2\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{x^2}{x^2 + y^2}\frac{x\frac{dy}{dx} - y(1)}{x^2}
$$

\n
$$
\Rightarrow \frac{1}{b}\sec^2\frac{y}{b}\frac{dy}{dx} = \frac{1}{a} + \frac{x}{x^2 + y^2}\frac{dy}{dx} - \frac{y}{x^2 + y^2}
$$

\n
$$
\Rightarrow \left(\frac{1}{b}\sec^2\frac{y}{b} - \frac{x}{x^2 + y^2}\right)\frac{dy}{dx} = \frac{1}{a} - \frac{y}{x^2 + y^2}
$$

\n
$$
\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{a} - \frac{y}{x^2 + y^2}}{\frac{1}{b}\sec^2\frac{y}{b} - \frac{x}{x^2 + y^2}}
$$

(ii) We have, $\sqrt{x} + \sqrt{y} = 4$...(i)

 Differentiating both sides with respect to *x*, we get

$$
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \implies \frac{1}{2\sqrt{y}} \frac{dy}{dx} = \frac{-1}{2\sqrt{x}}
$$

$$
\implies \frac{dy}{dx} = -\sqrt{\frac{y}{x}}
$$

Putting $x = 1$ in (i), we get

dx

$$
\sqrt{1} + \sqrt{y} = 4 \implies \sqrt{y} = 4 - 1 = 3 \implies y = 9
$$

$$
\therefore \frac{dy}{dx}\Big|_{(1,9)} = -\sqrt{\frac{9}{1}} = -3.
$$

15. (i) We have

$$
f(x) = x^3 + bx^2 + ax + 5, x \in [1, 3]
$$

\n
$$
\Rightarrow f'(x) = 3x^2 + 2bx + a
$$

\nSince Rolle's theorem holds for the function,
\n
$$
\therefore f'(c) = 0 \Rightarrow 3c^2 + 2bc + a = 0
$$

\n
$$
\Rightarrow c = \frac{-2b \pm \sqrt{4b^2 - 12a}}{6} = \frac{-b \pm \sqrt{b^2 - 3a}}{3}
$$

\n
$$
\Rightarrow 2 + \frac{1}{\sqrt{3}} = \frac{-b \pm \sqrt{b^2 - 3a}}{3}
$$

\n
$$
\Rightarrow 2 + \frac{1}{\sqrt{3}} = -\frac{b}{3} + \frac{\sqrt{b^2 - 3a}}{3}
$$

\n
$$
\Rightarrow 2 = -\frac{b}{3} \text{ and } \frac{\sqrt{b^2 - 3a}}{3} = \frac{1}{\sqrt{3}}
$$

\n
$$
\Rightarrow b = -6 \text{ and } b^2 - 3a = 3
$$

\n
$$
\Rightarrow b = -6 \text{ and } a = 11
$$

\n(ii) Let $f(x) = x^2$
\n(a) $f(x) = x^2$, being a polynomial, is a continuous function on [-2, 2].

(b) $f'(x) = 2x$ which exists in (-2, 2) \therefore $f(x)$ is derivable in (–2 2).

(c) Also, $f(-2) = f(2) = 4$ Thus, all the conditions of Rolle's theorem are satisfied. Hence there must exist at least one value $c \in (-2, 2)$ such that $f'(c) = 0$. Now, $f'(c) = 0 \implies 2c = 0$ [$\because f'(x) = 2x$] \Rightarrow $c = 0 \in (-2, 2)$

 Thus, the tangent to the curve is parallel to *x*-axis at $x = 0$.

$$
At x = 0, y = 0. \quad [\because y = x^2]
$$

 \therefore Tangent to the curve $y = x^2$ is parallel to *x*-axis at (0,0).