

Sets

Empty set
$$E = \{ \} = \phi; n(E) = 0$$

Singleton set
$$S = \{4\}; n(S) = 1$$

Finite set
$$F = \{1, 2, 3, 4, 5\}; n(F) = 5$$

Infinite set
$$N = \{1, 2, 3, ...\}; n(N) = infinity$$

$$E = \{e, a, r, t, h\}$$
 $H = \{h, e, a, r, t, \}$ $H = E$

Equivalent set Two sets having same number of elements, but different elements;

set of letters in the word heart and earth

$$E = \{e, a, r, t, h\}$$
 $F = \{1, 2, 3, 4, 5\}$ $F \approx E$

Sets

Universal set

Contains all the elements of which all other sets are subsets

A set of all vowels, $U = \{a, e, i, o, u\}$

$$A = \{a, e, i\}; B = \{i, o, u\}$$

Subset set

A set A is a subset of B only if every element in A is also an element in B

$$A \subseteq B$$
 $B = \{s, i, r\};$

Subset sets: 2^n subsets:

$$A_1 = \{s, i, r\}; A_2 = \{s, i\}; A_3 = \{s, r\}; A_4 = \{i, r\};$$

$$A_5 = \{s\};$$
 $A_6 = \{r\};$ $A_7 = \{i\};$ $A_8 = \{\};$

Proper subset

if atleast one element in B is not contained in A

$$A = \{1, 3, 5\}; B = \{1, 3, 5, 7\};$$
 $A \subset B$
 $G = \{h, a, b\}; H = \{h, b\};$ $H \subset G$ $n(Proper subset) = 2^n - 1$

Super set

A set containing all the elements of another set.

$$A \supseteq B$$
 $B = \{s, i, r\}; A = \{s, i, r, d\}$

$$A_5 = \{s\}; \qquad A_6 = \{r\}; \qquad A_7 = \{i\}; \qquad A_8 = \{s\};$$

$$A_7 = \{i\};$$

$$A_8 = \{ \};$$

if atleast one element in B is not contained in A

$$A = \{1, 3, 5, 7\}; B = \{1, 3, 5\}; A \supseteq B \text{ and } A \neq B \rightarrow A \supset B$$

Power set

Power set contains all the subsets of a set $n(P) = 2^n$

Cartesian Product of sets

Relations

Functions

Relations Functions

Definition Types Domain Range Definition Types Domain Range

Cartesian Product of two sets

$$A = \{1,2\}$$

$$B = \{5,7,9\}$$

Set
$$\rightarrow A \times B = \{(1,5), (1,7), (1,9), (2,5), (2,7), (2,9)\}$$

Since each one pair is a single element, use curly bracket.

It will come in pairs, one from first set, second from second set

This is also a set.

Cartesian Product of two sets

Example 1:

If $A = \{1,2,3\}$ and $B = \{2,4\}$ then the *Cartesian product* $A \times B$ *is*

- **A** {(1, 2),(1, 4),(2, 2), (2, 4), (3, 2), (3, 4)}
- **B** {(2,1),(4,1),(2, 2), (2, 4), (3, 2), (3, 4)}
- (1, 2),(1, 4),(2, 2), (2, 4), (3, 2), (4,3)}
- {(1, 2),(1, 4),(2, 2), (2, 4), (3, 2), (3, 4)}

 $\{(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)\}$

Cartesian Product of two sets

$$A = \{1,2\}$$

$$B = \{5,7,9\}$$

Set
$$\rightarrow A \times B = \{(1,5), (1,7), (1,9), (2,5), (2,7), (2,9)\}$$

Set
$$\rightarrow B \times A = \{(5,1), (5,2), (7,1), (7,2), (9,1), (9,2)\}$$

$$A \times B \neq B \times A$$

Cartesian Product of two sets

Donot make mistake in writing the pair properly.

How to avoid silly mistake? Take it seriously!, You won't make it again

Cartesian Product of two sets

Empty set : {.}

No element is there in the empty set

Consider two non – empty sets A and B $A = \{a_1, a_2, a_3\}$ $B = \{b_1, b_2, b_3\}$

$$A = \{a_1, a_2, a_3\}$$
 $B = \{b_1, b_2, b_3\}$

Carttesian product of sets A and B = $A \times B = \{(a, b): a \in A \text{ and } b \in B\}$

Example 2a:

if
$$A = \{2,3\}$$
 and $B = \{a, b, c\}$, find $A \times B$

$$A \times B = \{(2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\}$$

Example 2b:

if
$$A = \{2,3\}$$
, find $A \times A$ $A = \{2,3\}$ $A = \{2,3\}$

$$A = \{2,3\}$$
 $A = \{2,3\}$

$$A \times A = \{(2,2), (2,3), (3,2), (3,3)\}$$

Cartesian Product of two sets

Number of elements in a set: n(A)

If
$$n(A) = p$$
 and $n(B) = q$, then $n(A \times B) = p(q)$

Example 3:

if
$$A = \{2,3\}$$
 and $B = \{5,7,9\}$, find $n(A \times B)$

$$A \times B = \{(2,5), (2,7), (2,9), (3,5), (3,7), (3,9)\}$$

$$n(A) = 2$$
 and $n(B) = 3$, hence $n(A \times B) =$

$$2x3=6$$

$$n(A) = 2$$
 and $n(B) = 3$, hence $n(A \times B) = 6$

With 2, 3 times pair, with 3 again 3 pair. So totally 6 pair.

Cartesian Product of three sets

Can you do triplet logically? Yes.

$$n(A \times B \times C) = n(A) n(B) n(C)$$

Example 4:

if
$$A = \{2,3\}, B = \{3,5\}$$
 and $C = \{7\}$, find $n(A \times B \times C)$

$$A \times B \times C = \{(2,3,7), (2,5,7), (3,3,7), (3,5,7)\}$$

$$n(A) = 2$$
, $n(B) = 2$ and $n(C) = 1$ hence $n(A \times B \times C) = 2(2)(1) = 4$

Sets, Relations and Functions Subsets

Number of subsets of $A = 2^{n(A)}$

Example 5:

If $A = \{2,3\}$ and $B = \{3,5,7\}$ then the number of subsets of $A \times B$

6

2⁵

26

23

elements in $(A \times B)$:

 $\{(2,3), (2,5), (2,7), (3,3), (3,5), (3,7)\}$

$$n(A) = 2; n(B) = 3$$

$$\therefore n(A \times B) = 2(3) = 6$$

Number of subsets of $A \times B = 2^{n(A \times B)} = 2^6$

$$A = \{1,2\}$$
 $B = \{3,4,5\}$

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

Create any random subset R_1 from $A \times B$

$$R_1 = \{(1,3), (1,5), (2,5)\}$$

 $A \times B$ has six elements. Hence it has 2^6 subsets.

All these subsets are relations

Why do you name it as relation?

Relations

Let us show in a Venn diagram

Definition:

Let *A* and *B* be two non − empty subsets.

Any subset of $A \times B$ is called relation from A to B.

Relations

Let
$$A = \{1,3,5\}$$
 and $B = \{7,8\}$, then

$$A \times B = \{(1,7), (1,8), (3,7), (3,8), (5,7), (5,8)\}$$

Consider any random subset,

$$R_1 = \{(1,7), (3,7), (3,8)\}$$

$$R_2 = \{(1,7)\}$$

 R_1 , R_2 being subsets of $A \times B$. are relations from A to B.

Number of subsets of $A = 2^{n(A)}$

Number of relations from *A* to $B = 2^{n(A) n(B)}$

Example 6:

If $A = \{2,3\}$ and $B = \{3,5,7\}$ then the number of relations from A to B

6

2⁵

26

23

Number of elements of $A \times B = n(A) n(B) = 2(3) = 6$

Number of relations from A to B = Number of subsets of $A \times B = 2^6$

Description of Relations

There are three ways to describe a relation.

(a)
$$R_1 = \{(1,1), (2,3), (3,5), \}$$

(b)
$$R_2 = \{(x, y): y = 2x - 1, x \in A \text{ and } y \in B\}$$

(c)
$$R_3 = \{xRy \iff y = 2x - 1, x \in A \text{ and } y \in B\}$$

- (a) If $(x, y) \in R$, then we call y as the image of x and x as the pre image of y
- (b) Relation from A to A (i. e. subset of $A \times A$) is also called 'relation on A'.

What is the image of 3? What is the preimage of 3?

What is 3 to 6?

preimage or image?

Relations

Subset of $A \times B$ is relation from $A \rightarrow B$

Subset of $A \times A$ is relation from $A \rightarrow A$

Subset of $A \times A$ is also called relation on A

Domain and Range of a Relation

Domain and Range of a Relation

$$A = \{1,2,3,4\}$$

$$B = \{5,6,8,9\}$$

$$R = \{(1,5), (1,6), (2,8)\}$$

$$D_R = \{1,2\}$$
 $R_R = \{5,6,8\}$

How do you show this?

Domain ? {1,2}

Range ? {5,6,8}

5,6,8

Domain and Range of a Relation

Domain of a $R = \{x: (x, y) \in R\}$

Domain of a $R = \{x: (x, y) \in \mathbb{R}\}$

If R is a relation from A to B, then B is called co-domain.

Domain and Range of a Relation

Consider a relation $x R y \Leftrightarrow y = x + 1$ defined on $A = \{-1,1,2,3,4\}$

x is in relation to *y*

$$x R y = \{(1,2), (2,3), (3,4)\}$$

Domain of $R = \{1,2,3\}$

Range of $R = \{2,3,4\}$

Codomain

Domain and Range of a Relation

Given $R = \{(x, y) \in W, x^2 + y^2 = 25\}$. Find the domain and range of R.

$$W = \{0,1,2,3,4,5...\}$$

$$x = 0 \rightarrow y = 5$$

$$x = 1 \rightarrow y = \sqrt{24} \neq W$$

$$x = 2 \rightarrow y = \sqrt{21} \neq W$$

$$x = 3 \rightarrow y = 4$$

$$x = 4 \rightarrow y = 3$$

$$x = 5 \to y = 0$$

$$R = \{(0,5), (3,4), (4,3)(5,0)\}$$

Domain =
$$\{0,3,4,5\}$$

Range =
$$\{5,4,3,0\}$$

Sets, Relations and Functions Types of Relation

Subsets of $A \times B$

Subsets of $A \times A$

Do you understand this?

Empty relation

Universal relation

Identity relation

Sets, Relations and Functions Types of Relation

Reflexive Relation

Symmetric Relation

Transitive Relation

Equivalence Relation

Types of Relation

(a) Empty Relation

Here we talk about relation on A only

Let A be a set and $\emptyset \subset A \times A$. Then, \emptyset is a relation on A.

Ø is called empty relation.

$$\emptyset = \{.\}$$

(b) Universal Relation

Let *A* be a set and $A \times A \subseteq A \times A$. Then, $A \times A$ is a relation on *A*.

 $A \times A$ is called universal relation.

Let
$$A = \{1,2\}$$

 $R_2 = A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$

(c) Identity Relation

Let *A* be a set. If every element of *A* is related to itself only, then it is called identity relation.

$$I_A = \{(a, a) : a \in A\}$$
 is called identity relation on A

$$R_3 = \{(1,1), (2,2)\}$$

Types of Relation

Let
$$A = \{2,3\}$$

 $A \times A = \{(2,2), (2,3), (3,2), (3,3)\}$
 $R_1 = \emptyset = \{.\}$ called empty relation
 $R_2 = A \times A = \{(2,2), (2,3), (3,2), (3,3)\}$ called universal relation
 $R_3 = \{(2,2), (3,3)\}$ called identity relation
 $R_3 = \{(3,3)\}$ is not identity relation

Functions

Functions

Definition Types Domain Range

You already know what is a function?

$$f(x) = x^2$$
 This is a function!

$$f(2) = 2^2 = 4$$

$$f(3) = 3^2 = 9$$

$$f(10) = 10^2 = 100$$

$$f(x) = 2x + 1$$
 This is a function!

$$f(2) = 2(2) + 1 = 5$$

$$f(3) = 2(3) + 1 = 7$$

$$f(10) = 2(10) + 1 = 21$$

Now formally, we will see the terms and study

Sets, Relations and Functions Functions

Function is a relation having two particular characteristics.

Function is a relation only, but under two conditions

Sets, Relations and Functions Function

Let *A* and *B* be two nonempty sets.

A function from A to B, i. e., f: A \rightarrow B is a relation such that

- (a) all the elements of *A* are related to the elements of *B* and
- (b) no element of *A* is related to more than one element of *B*.

Function

Which of the following relations on the set {4,5,6} is not a function on the same set? Why?

- $\{(4,4), (5,5), (6,6)\}$
- $\{(4,5), (5,5), (6,4)\}$
- $\{(4,6), (5,4), (6,5)\}$
- $\{(4,5), (5,4), (5,6)\}$

 $\{(4,5), (5,4), (5,6)\}$ Two reasons! 5 is friend with two; 6 is alone

Function

 $f: A \to B$, where $A = \{-1,1,2\}$ and $B = \{1,4,9\}$ defined by $f(x) = x^2$ is a function for which

- (a) $A = \{-1,1,2\}$ is called the domain of f
- (b) $B = \{1,4,9\}$ is called the codomain of f
- (c) $\{1,4\}$ is called the range of f, which is a collection of all images.

B is codmain;

33

Function

2 has no image

1 has more than one image

Both are relations, but neither is a function from A to B.

Sets, Relations and Functions Function

Neither of the graphs given here represent functions.

Vertical line test. If a vertical line cuts the graph atmost one point, it is a function.

In a function, every input from the domain has unique output from the codomain.

Function

$$f(x_1) = y_1, y_2,$$

$$f(x_1) = y_1$$

Vertical Line Test

Graph of Functions

Is this grpah of a function?

Is this grpah of a function?

Sets, Relations and Functions Classification of Functions

Quiz:

4 4 5 5 6 6

Which one is true?

one to many? is not a function at all

onto (every one is covered)

into (some remains uncovered in codomain)

onto (everyone is covered)

Classification of Functions

Quiz:

many to one and onto

onto (every one is covered)

many to one and into

into (some remains uncovered)

one to many? is not a function at all

Classification of Functions

Quiz:

many to one and into

into (some remains uncovered)

one to one and into

one to many? is not a function at all

A. ALGEBRAIC FUNCTION

Function	Domain	Range
(i) x^n , $(n \in \mathbb{N})$	R = set of real numbers	R, if n is odd $R^+ \cup \{0\}$, if n is even
(ii) $\frac{1}{x^n}$, $(n \in N)$	R - {0}	$R - \{0\}$, if n is odd R^+ , if n is even
(iii) $x^{1/n}$ ($n \in N$)	R, if n is odd $R^+ \cup \{0\}$, if n is even	R, if n is odd $R^+ \cup \{0\}$, if n is even
(iv) $\frac{1}{x^{1/n}}$, $(n \in N)$	$R - \{0\}$, if n is odd R^+ , if n is even	$R - \{0\}$, if n is odd R^+ , if n is even

42

B. TRIGONOMETRIC FUNCTION

Function	Domain	Range
(i) sin x	R	[-1, 1]
(ii) cos x	R	[-1, 1]
(iii) tan x	$R-(2k+1)\frac{\pi}{2}, k \in I$	R
(iv) sec x	$R-(2k+1)\frac{\pi}{2},k\in I$	(-∞, -1] ∪ [1, ∞)
(v) cosec x	$R-k\pi$, , $k\in I$	$(-\infty, -1] \cup [1, \infty)$
(vi) cot x	$R-k\pi$, , $k\in I$	R

C. INVERSE TRIGONOMETRIC FUNCTION

Function	Domain	Range
(i) sin ^{−1} x	[-1, 1]	$\left[-\frac{\pi}{2},+\frac{\pi}{2}\right]$
(ii) cos ⁻¹ x	[-1, 1]	[0, π]
(iii) tan ⁻¹ x	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
(iv) sec ⁻¹ x	$(-\infty, -1] \cup [1, \infty)$	$[0, \pi]$ – $\left[\frac{\pi}{2}\right]$
(v) cosec ⁻¹ x	(-∞, -1] ∪ [1, ∞)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
(vi) cot ⁻¹ x	R	(0, π)

D. EXPONENTIAL FUNCTION

Function	Domain	Range
(i) e ^x	R	R ⁺
(ii) e ^{1/x}	R – {0}	R+ - {1}
(iii) a ^x , a > 0	R	R ⁺
(iv) $a^{1/x}$, $a > 0$	R – {0}	R+ - {1}

E. LOGARITHIMIC FUNCTION

Function	Domain	Range
(i) $\log_a x$, $(a > 0)(a \ne 1)$	R ⁺	R
(ii) $\log_x a = \frac{1}{\log_a x}$	$R^+ - \{1\}$	R – {0}
$(a > 0) (a \neq 1)$		

 R^+ : Here zero and all R < 0 not included

F. INTEGRAL PART FUNCTION

Function	Domain	Range
(i) [x]	R	I
(ii) $\frac{1}{[x]}$	R – [0, 1)	$\left\{\frac{1}{n},n\in I-\{0\}\right\}$

[x] is GIF, $\{x\}$ is FPF

G. FRACTIONAL FUNCTION

Function	Domain	Range
(i) {x}	R	[0, 1)
(ii) $\frac{1}{\{x\}}$	R – I	(1, ∞)

H. MODULUS FUNCTION

Function	Domain	Range
(i) x	R	R⁺ ∪ {0}
(ii) $\frac{1}{ x }$	R - {0}	R ⁺

I. SIGNUM FUNCTION

Function	Domain	Range
$sgn(x) = \frac{ x }{x}$	R	{-1, 0, 1}

J. CONSTANT FUNCTION

Function	Domain	Range
f(x) = c	R	{c}

Classification of Functions

Injectivity or one to one

If no two inputs have the same image, then the function is called one - one (or injective),

otherwise, it is many — one.

Classification of Functions

Example 6:

First understand, then we will see how it is used!

one – one functions $\rightarrow y = x^3$, y = 2x - 1,...

$$y(+2) = 8; y(-2) = -8$$

many – one functions $\rightarrow y = x^2$, $y = \cos x$, $\sin x$,...

$$y(+2) = 4$$
; $y(-2) = 4$

To check the function, first solve

$$f(x_1) = f(x_2)$$

If you get $x_1 = x_2$ only, then it is one — one function, otherwise it is many to one.

Classification of Functions

Check whether the following functions are one - one or many - one.

$$(a) f(x) = x^2$$

$$(b) f(x) = x^5$$

$$(c) f(x) = x^2, x \in R^+$$

54

Sets, Relations and Functions

Classification of Functions

Check whether the following functions are one - one or many - one.

$$(a) f(x) = x^2$$

$$f(x_1) = f(x_2)$$

$$x_1^2 = x_2^2$$

$$x_1^2 - x_2^2 = 0$$

$$(x_1 + x_2)(x_1 - x_2) = 0$$

$$x_1 = x_2 \text{ or } x_1 = -x_2$$

many – one

Two different x values love the same y!

$$(b) f(x) = x^5$$

$$f(x_1) = f(x_2)$$

$$x_1^5 = x_2^5$$

$$x_1 = x_2$$

how it is one to one? Later we will learn this

$$(c) f(x) = x^2, x \in \mathbb{R}^+$$

$$f(x_1) = f(x_2)$$

$$x_1^2 = x_2^2$$

$$x_1^2 - x_2^2 = 0$$

$$(x_1 + x_2)(x_1 - x_2) = 0$$

$$x_1 = x_2 \text{ or } x_1 = -x_2$$

$$-x_2 \notin \mathbb{R}^+$$

$$x_1 = x_2$$

Classification of Functions

$$f(x_1) = f(x_2)$$

 \downarrow

$$x_1 = x_2 \ or x_1 = -x_2$$

many to one

$$f(x_1) = f(x_2)$$

 \downarrow

$$x_1 = x_2$$

one to one

Testing of Functions

Horizontal Line Test

- (a) A horizontal Line cuts the graph at two (or more) points. So, it is not a one one function.
- (b) No horizontal Line cuts the graph at more than one point. So, it is a one one function.

Testing of Functions

Many to one function!

Shortcut method!

If a horizontal cuts at two places, many to one function

Take any y, you see both x1 and x2 likes this

Testing of Functions

One to one function!

Shortcut method!

Take any y, you see only one x1 likes this

If no horizontal Line cuts the graph at more than one point, it is a one - one function.

Dr RK

Classification of Functions

Surjectivity or onto

If range = codomain, then the function

is onto (or surjective), otherwise, it is into.

Surjective (onto)
We shd learn range to understand this

from this slide for class 2

90% of students forget this after few days

$$f: A \to B$$

Sets, Relations and Functions Functions

Now answer this after thinking

$$\sqrt{-3}$$
 is defined or not? $\sqrt{-3}$ is not defined.

$$\sqrt{0}$$
 is defined $\sqrt{0} = 0$

$$\sqrt{-1}$$
 is defined?

Functions

$$g(x) = \sqrt{x-2}$$

We are given a function, but we are not given the domain

 $f: A \rightarrow B$ where A is domain and B is codomain

Now tell me for what *x* values this is defined?

x belongs to all Real values except 2

Here the function g(x) is defined for $x \in [2, \infty)$

$$[2,\infty)$$

$$g(x) = \sqrt{x-2}: x \in [2, \infty)$$

Domain of a Function

Domain:

Domain is primarily a collection of values of x for which the function y = f(x) is defined.

We will see how to find the Domain of a given function

Domain of a Function

Consider the following

$$(a) y = \frac{1}{x - 4} \to x \in \mathbb{R} \setminus \{4\}$$

(b)
$$y = \sqrt{x-3} \rightarrow x \in [3, \infty)$$

We can find the domain from the function

$$y = \sqrt{x - 3}$$

Rules to find Domain

- (a) $\frac{1}{*}$ is defined if the denominator $*\neq 0$
- (b) $\sqrt{*}$ is defined if the value of $* \ge 0$
- (c) $\log_b a$ is defined if the value of a > 0 and b > 0, $b \ne 1$
- (d) Domain of f(x) + g(x) is the intersection of domains of f(x) and g(x)

Domain of a Function

Next Class

Domain of a Function

Find the domain of the following.

(a)
$$y = \frac{1}{x^2 - 9}$$

$$(b) y = \sqrt{x^2 - 9}$$

$$(c) \ y = \frac{1}{\sqrt{x^2 - 9}}$$

$$(d) y = \log(x^2 - 9)$$

$$(e) y = \log(x - 9)$$

Domain of a Function

Find the domain of the following.

(a)
$$y = \frac{1}{x^2 - 9}$$

y is defined if

$$x^2 - 9 \neq 0$$

$$(x+3)(x-3) \neq 0$$

$$x \neq -3, x \neq 3$$

$$x \in R \setminus \{-3,3\}$$

Denominator shd not be zero

$$x^2 - 9$$
 shd not be zero

$$x$$
 shd not be $= \pm 3$

We can also write $x \in \mathbb{R} \setminus \{-3,3\}$

Domain of a Function

Find the domain of the following.

(b)
$$y = \sqrt{x^2 - 9}$$

y is defined if

$$x^2 - 9 \ge 0$$

$$(x+3)(x-3) \ge 0$$

$$x \in (-\infty, -3] \cup [3, \infty)$$

Domain of a Function

Find the domain of the following.

(c)
$$y = \frac{1}{\sqrt{x^2 - 9}}$$

y is defined if

$$x^2 - 9 > 0$$

$$(x+3)(x-3) > 0$$

$$x \in (-\infty, -3) \cup (3, \infty)$$

First Root should be considered.

Root exists only if $x^2 - 9 \ge 0$

Next Denominator shd not be zero

Hence
$$x^2 - 9 > 0$$

Domain of a Function

Find the domain of the following.

$$(d) y = \log(x^2 - 9)$$

y is defined if

$$x^2 - 9 > 0$$

$$(x+3)(x-3) > 0$$

$$x \in (-\infty, -3) \cup (3, \infty)$$

$$\log_a b$$

Here
$$a = 10$$

log will be happy when a is positive and not equal to 1

log will be happy when *b* is positive

Hence
$$x^2 - 9 > 0$$

Domain of a Function

Find the domain of the following.

$$(e) y = \log(x - 9)$$

y is defined if

$$x - 9 > 0$$

$$x \in (9, \infty)$$

$$\log_a b$$

Here
$$a = 0$$

log will be happy when a is positive and not equal to 1

log will be happy when *b* is positive

Hence
$$x^2 - 9 > 0$$

Domain of a Function

Find the domain of the following.

$$(a) y = \log_{x}(4 - x^2)$$

(b)
$$y = \sqrt{x^2 - 4} + \log_{10}(x - 5)$$

 $\log_a b$

log will be happy when a is positive and not equal to 1

log will be happy when *b* is positive

Domain of a Function

Find the domain of the following.

$$(a) y = \log_{x}(4 - x^2)$$

here base is *x*

$$\therefore x > 0$$
 and $x \neq 1$

Also, *b* should be positive

$$4 - x^{2} > 0$$

$$x^{2} - 4 < 0$$

$$(x - 2)(x + 2) < 0$$

Combining all the three conditions

$$\log_a b$$

log will be happy when a is positive and not equal to 1

log will be happy when *b* is positive

Domain of a Function

Combining all the three conditions

$$x > 0$$
 and $x \neq 1$

$$(x-2)(x+2) < 0$$

Now see the common parts in all the three

Sol:
$$x$$
 ∈ (0,2)\{1}

How do you intersect three things

Plot
$$x > 0$$
, plot $x \neq 1$, plot $-2 < x < 2$

Domain of a Function

Find the domain of the following.

(b)
$$y = \sqrt{x^2 - 4} + \log_{10}(x - 5)$$

When more than one conditions come, we shd consider all the conditions

$$\sqrt{x^2-4}$$
 is defined if $x^2-4 \ge 0$

$$(x-2)(x+2) \ge 0$$

$$-2 \le x \le 2$$

$$\log_{10}(x-5)$$
 is defined if $(x-5) > 0$

$$f(3) = \sqrt{9 - 4} + \log_{10}(3 - 5)$$

If I take x = 3, then $\sqrt{x^2 - 4}$ will be defined.

Yes or No?

but, $\log_{10} x - 5$ will be undefined. Yes or No?

Module Name

Domain of a Function

Find the domain of the following.

$$y = \sqrt{\frac{(x-1)(x-2)}{(9-4x^2)}}$$

More and more functions you learn, more and more

we need to learn about domain

When i do this, tell me you will feel that that is obvious.

y is defined if

$$\geq 0, x \neq \frac{3}{2}$$

$$\frac{(x-1)(x-2)}{(9-4x^2)} \ge 0$$

$$\frac{(x-1)(x-2)}{(2x-3)(2x+3)} \le 0$$

Only one condition here.

Dont make separate conditions for each term

Now everything is considered

78

Sets, Relations and Functions

Domain of a Function

$$\frac{(x-1)(x-2)}{(2x-3)(2x+3)} \le 0$$

$$x \in \left(-\frac{3}{2}, 1\right] U\left(\frac{3}{2}, 2\right]$$

At x = 0, f(x) is negative

Domain of a Function

$$(x-1)(x-2) \ge 0$$

$$(3 - 2x)(3 + 2x) > 0$$

$$\frac{(x-1)(x-2)}{(3-2x)(3+2x)} > 0$$

$$x \in \left(-\frac{3}{2}, 1\right] U\left(\frac{3}{2}, 2\right]$$

Domain of a Function

$$x \in \left(-\frac{3}{2}, 1\right] U\left(\frac{3}{2}, 2\right]$$

Domain of a Function

Find the domain of the following.

$$y = \sqrt{1 - \sqrt{1 - x^2}}$$

First let us make the inner square root happy!

y is defined if $1 - x^2 \ge 0$

Next let us make the outer square root happy!

$$1 - \sqrt{1 - x^2} \ge 0$$

Both shd be considered

Order is not important because simultaneously they shd be satisfied

$$1 - x^2 \ge 0$$
 and $1 - \sqrt{1 - x^2} \ge 0$

Domain of a Function

Now the second one needs a little more concentration from your end.

$$1 - x^2 \ge 0$$
 and $1 - \sqrt{1 - x^2} \ge 0$

$$1 - x^2 \ge 0$$

$$x^2 - 1 \le 0$$

$$(x+1)(x-1) \le 0$$

$$-1 \le x \le 1$$

$$1 - \sqrt{1 - x^2} \ge 0$$

$$1 \ge \sqrt{1 - x^2}$$

Squaring on both sides

$$1 \ge 1 - x^2$$

$$x^2 \ge 0 \to x \in R$$

$$-1 \le x \le 1 \ \cap x^2 \ge 0 \to x \in R$$

Domain of a Function

$$\sqrt{1-x^2} \le 1$$

is always less than or equal to one!

Is
$$a \ge b \implies a^2 \ge b^2$$
 always?

No, it is not always

$$a \ge b \implies a^2 \ge b^2$$
 only if a and $b \ge 0$

$$5^2 < (-10)^2$$

$$-10 > -20$$

$$a \ge b \implies a^2 \ge b^2$$
 if a and $b \ge 0$

Domain of a Function

 $\sqrt{a \ number}$ is always positive

$$\sqrt{25} = +5$$
 only; $not \pm 5$

if one is
$$+$$
 ve and one is $-$ ve
Here anyting can happen
if $a > 0, b < 0$

$$5 > -2$$
 $5 > (-10)$

$$25 > 4$$
 $25 < 100$

Modulus is therefore important

Domain of a Function

Solve
$$\sqrt{x^2 - 4} < 3$$
 for x

Very important. We learn a new thing here.

Squaring both sides

$$x^2 - 4 < 9$$

$$x^2 - 13 < 0$$

$$(x - \sqrt{13})(x + \sqrt{13}) < 0$$

$$-\sqrt{13} < x < \sqrt{13}$$

Wrong! Why?

At
$$x = 1 \to \sqrt{x^2 - 4} = \sqrt{1 - 4} < 3$$

 $\sqrt{-3}$ is undefined

Domain of a Function

Here *x* does not know that there is a root here. We have removed the root in the first step!

If there is a root in the problem and you square it to solve, then such problems will arise.

You must take care of this differently

Also,
$$x^2 - 4 \ge 0$$

Taking the common (intersection)

Sol:
$$(-\sqrt{13}, -2]U[2, \sqrt{13})$$

$$for \sqrt{x^2 - 4} < 3$$

Domain of a Function

Solve
$$\sqrt{x^2 - 4} < 2$$
 for x

$$x^2 - 4 \ge 0$$

$$(x+2)(x-2) \ge 0$$

$$x \in (-\infty, -2] \cup [2, \infty)$$

$$\sqrt{x^2 - 4} < 2$$
 Squaring both sides_ $x^2 - 4 < 4$

$$x^2 < 8 \qquad \therefore -\sqrt{8} < x < \sqrt{8}$$

$$\therefore -2\sqrt{2} < x < 2\sqrt{2}$$

Square root inside shd be positive, and outside also shd be positive

$$\sqrt{8} = 2\sqrt{2}$$

Taking the intersection (common)

$$x \in \left(-2\sqrt{2}, -2\right] \cup \left[2, 2\sqrt{2}\right)$$

Domain of a Function

Identity function

Constant function

Polynomial function

Rational function

Some Functions and their Graphs

Modulus Function

Signum Function

Greatest Integer Function

Some Functions and their Graphs

Range of a Function

Example

Find the range of the function
$$f(x) = x^2 - x - 1$$

$$y \in \left[-\frac{5}{4}, \infty\right)$$

Find the range of the function
$$f(x) = x^2 + x + 1$$

$$y \in \left[\frac{3}{4}, \infty\right)$$

Find the range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
 $y \in \left(1, \frac{7}{3}\right)$

$$y \in \left(1, \frac{7}{3}\right)$$

Range of a Function

Example

Find the range of the function $f(x) = x^2 - x - 1$

$$d = D$$

$$d^2 + r^p$$

$$y \in \left[-\frac{5}{4}, \infty\right)$$

Range of a Function

Example

Find the range of the function $f(x) = x^2 + x + 1$

$$y \in \left[\frac{3}{4}, \infty\right)$$

Range of a Function

Example

Find the range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$

$$y \in \left(1, \frac{7}{3}\right]$$

Range of a Function

Example

Find the range of the function $f(x) = x^2 - x - 1$

$$y = x^2 - x - 1$$

$$\frac{dy}{dx} = 2x - 1 = 0 \rightarrow x = \frac{1}{2}$$

$$\frac{d^2y}{dx^2} = 2, Positive \ constant \ \ \therefore \ y \ is \ minimum \ at \ x = \frac{1}{2}$$

$$y\left(\frac{1}{2}\right) = \frac{1}{4} - \frac{1}{2} - 1 = -\frac{5}{4}$$
 $y \in \left[-\frac{5}{4}, \infty\right)$

Range of a Function

Example

Find the range of the function $f(x) = x^2 + x + 1$

$$y = x^2 + x + 1$$

Domain is $x \in R$

$$\frac{dy}{dx} = 2x + 1 = 0 \rightarrow x = -\frac{1}{2}$$

$$\frac{d^2y}{dx^2} = 2, Positive \ constant \ \ \therefore \ y \ is \ minimum \ at \ x = -\frac{1}{2}$$

$$y\left(-\frac{1}{2}\right) = \frac{1}{4} - \frac{1}{2} + 1 = \frac{3}{4}$$

$$y \in \left[\frac{3}{4}, \infty\right)$$

Aliter:
$$0$$
$$y = \left(x + \frac{1}{2}\right)^2 + 1 - \frac{1}{4}$$

$$y_{max} = \left(\infty + \frac{1}{2}\right)^2 + 1 - \frac{1}{4} = \infty$$

$$y_{min} = 0 + 1 - \frac{1}{4} = \frac{3}{4}$$

$$\therefore y \in \left[\frac{3}{4}, \infty\right)$$

Range of a Function

Example

Find the range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
 $y = \left(1, \frac{7}{3}\right)$

$$y = \frac{x^2 + x + 2}{x^2 + x + 1}$$

$$y(x^2 + x + 1) = x^2 + x + 2$$

$$x^{2}(y-1) + x(y-1) + y - 2 = 0$$

We know Domain of x is R.

 $Discriminant, D \geq 0$

$$(y-1)^2 - 4(y-1)(y-2) \ge 0$$

$$-3y^2 - 10y + 7 \ge 0$$

$$(3y-7)(y-1) \ge 0$$

Now verify the end points for y = 1

$$x^2 + x + 2 \neq x^2 + x + 1$$
 So 1 is excluded

$$So, y \in \left(1, \frac{7}{3}\right]$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Range of a Function

Example

Find the range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
 $y = \left(1, \frac{7}{3}\right)$

$$y = \frac{x^2 + x + 2}{x^2 + x + 1} = \frac{(x^2 + x + 1) + 1}{(x^2 + x + 1)}$$

$$y = 1 + \frac{1}{x^2 + x + 1}$$

$$y = 1 + \frac{1}{\left(x + \frac{1}{2}\right)^2 + 1 - \frac{1}{4}}$$
$$y = 1 + \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$y_{max} = +1 - \frac{1}{0 + \frac{3}{4}} = \frac{7}{3}$$

$$y_{min} = +1 + \frac{1}{\infty} = 1$$

$$So, y \in \left(1, \frac{7}{3}\right]$$

Sets, Relations and Functions **Subsets**

If A is a set with n elements, total number of subsets possible = 2^n

Number of elements in power set of a set $A = 2^{n(A)}$

$$A = \{1,2,3\}$$

Number of subsets = $2^3 = 8$

 $Subsets = \{.\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$

Powerset, $P(A) = \{\{.\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Relations

Equivalence relations $R A \rightarrow A$

A relation is equivalence relation only if it is reflexive, symmetric and transitive

A relation is reflexive

if
$$\forall a \in A, (a, a) \in R$$

 $(a,a) \in R$ and aRa both are same

A relation is symmetric if

for any
$$a, b \in A$$
,

$$(a,b) \in R \to (b,a) \in R$$

A relation is transitive if

for any
$$a, b, c \in A$$
,

$$(a,b) \in R$$
, $(b,c) \in R \rightarrow (a,c) \in R$

$$A = \{1, 2, 3\}$$

$$(1,1) \in R$$

Note: \forall

$$(2,2) \in R$$

$$(3,3) \in R$$

Relations

A relation is reflexive

 $if \ \forall a \in A, (a, a) \in R$

 $(a,a) \in R$ and aRa both are same

$$A = \{1, 2, 3\}$$
 Note: \forall

$$(1,1) \in R \quad (2,2) \in R \quad (3,3) \in R$$

A relation is symmetric if

for any $a, b \in A$,

$$(a,b) \in R \to (b,a) \in R$$

A relation is transitive if

for any $a, b, c \in A$,

$$(a,b) \in R$$
, $(b,c) \in R \rightarrow (a,c) \in R$

A relation is NOT reflexive

 $\exists a \in A, (a, a) \notin R$

∃ is read as "there exists"

A relation is NOT symmetric if

 $\exists a, b \in A$,

 $(a,b) \in R$, but $(b,a) \notin R$

A relation is NOT transitive if

 $\exists a, b, c \in A$,

 $(a,b),(b,c) \in R, but(a,c) \notin R$

Relations

Example

Check for reflexivity, symmetry and trastivity

$$aRb \ iff \ b \ is \ divisible \ by \ a, a, b \in N$$
 (OR)

$$R = \{(a, b): b \text{ is divisible by } a; a, b \in N\}$$

A relation is NOT reflexive

 $\exists a \in A, (a, a) \notin R$

∃ is read as "there exists"

$$\exists 1, 2 \in NA$$
,

$$(1,1) \in R, (2,2) \in R$$

A relation is NOT symmetric if

 $\exists a, b \in A$,

 $(a,b) \in R$, but $(b,a) \notin R$

$$\exists 1,2 \in N, (1,2) \in R$$

$$but(2,1) \notin R$$

1 is not divisible by 2

- \therefore *R* is reflexive and transtive but not symmetric.
- \therefore R is not equivalence relation...

A relation is NOT transitive if

 $\exists a, b, c \in A$,

 $(a,b),(b,c) \in R, but (a,c) \notin R$

$$\exists a, b, c \in N$$
,

$$(a,b) \in R \rightarrow b = ma$$

$$(b,c) \in R \rightarrow c = nb = nm \ a$$

$$\therefore (a,c) \in R$$

Q 1.

JEE Mathematics – Functions

Find the domain and range of the function f(x) = |x - 1|

Option 1:
$$R, R - (0,1)$$

Option 2:
$$R, R - \{3\}$$

Option 3:
$$R$$
, $[0, \infty)$

Option 4: none of these

$$f(x) = |x - 1| = \begin{bmatrix} x - 1 & if \ x \ge 1 \\ & & where \ x \in R \\ 1 - x & if \ x < 1 \end{bmatrix}$$

$$|x-1| \ge 0$$

$$\therefore Range \ is = R^+, \{0\} = [0, \infty)$$

Option 3:
$$R$$
, $[0, \infty)$

If $f: A \to B$ be a function, the set A is domain of the function.

The set B is codomain of the function. Range is subset of the codomain.

Q 2.

JEE Mathematics – Functions

Find the domain and range of the function f(x) = |x + 1| - 2

Option 1:
$$R, R - (0,1)$$

Option 2:
$$R, R - \{3\}$$

Option 3:
$$R$$
, $[-2, \infty)$

Given
$$f(x) = |x + 1| - 2$$
 where $x \in R$

$$|x+1| \ge 0, \forall x \in R$$

$$|x+1| - 2 \ge 0 - 2 \ge 0$$

Option $3:[-2,\infty)$

If $f: A \to B$ be a function, the set A is domain of the function.

The set B is codomain of the function. Range is subset of the codomain.

Q 3.

JEE Mathematics – Functions

Find the domain and range of the function $f(x) = |x - 1| + |x - 2|, -1 \le x \le 3$.

Option 1:
$$R, R - (0,1)$$

Option 2:
$$R, R - \{3\}$$

Option 4: none of these

$$f(x) = |x - 1| + |x - 2|$$

$$-1 \le x < 1, f(x) = -(x - 1) - (x - 2) = 3 - 2x$$

$$1 \le x < 2, f(x) = (x - 1) - (x - 2) = 1$$

$$2 \le x \le 3, f(x) = (x - 1) + (x - 2) = 2x - 3$$

∴ Domain and Range are $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$ $\begin{matrix} 3 \\ 2 \\ 4 \end{matrix}$ Option 3: [-1,3], [1,5] 1

If $f: A \rightarrow B$ be a function, the set A is domain of the function.

The set B is codomain of the function. Range is subset of the codomain.

Q 4.

JEE Mathematics – Functions

Find the domain and range of the function $f(x) = \frac{x^2}{1 + x^2}$

Option 1:
$$R^+$$
 and R

$$f(x) = y = \frac{x^2}{1 + x^2} \rightarrow domain is R$$

$$y(1+x^2) = x^2 \to x^2(y-1) + y = 0$$

$$\rightarrow x^2 = \frac{y}{1 - y} \rightarrow x = \pm \sqrt{\frac{y}{1 - y}}$$

Home Work

If $f: A \rightarrow B$ be a function, the set A is domain of the function.

The set B is codomain of the function. Range is subset of the function.

112

Q 5.

JEE Mathematics – Functions

Let $A = \{1,2,3,4\}$. The number of functions $f: A \to A$ satisfying f(f(i)) = 1 for

all
$$1 \le i \le 4$$
 is

Option 3: 9

Option 4: 10

$$f(2) \neq 1,2 \rightarrow f(f(2)) = f(1) \neq 1$$

$$f(2) \neq 1,2 \rightarrow f(f(2)) = f(2) \neq 1$$

$$f(3) \neq 3,1 \rightarrow f(f(3)) = f(1) = \neq 1$$

$$f(4) \neq 4,1 \rightarrow f(f(4)) = f(1) = \neq 1$$

$$f(2) = 1$$
 then $f(1) \neq 1$: many to one

$$f(1) = 1,1 \rightarrow f(f(1)) = 1$$

$$f(2) = 3$$
 and $f(3) = 1 \rightarrow f(f(2)) = f(3) = 1$

$$f(2) = 4$$
 and $f(4) = 1 \rightarrow f(f(2)) = f(4) = 1$

$$f(3) = 2$$
 and $f(2) = 1 \rightarrow f(f(3)) = f(2) = 1$

$$f(3) = 4$$
 and $f(4) = 1 \rightarrow f(f(3)) = f(4) = 1$

$$f(4) = 2$$
 and $f(2) = 1 \rightarrow f(f(4)) = f(2) = 1$

$$f(4) = 3$$
 and $f(3) = 1 \rightarrow f(f(4)) = f(3) = 1$

$$f(1) = 2$$
 and $f(2) = 1 \rightarrow f(f(1)) = f(2) = 1$

$$f(1) = 3$$
 and $f(3) = 1 \rightarrow f(f(1)) = f(3) = 1$

$$f(1) = 4$$
 and $f(4) = 1 \rightarrow f(f(1)) = f(4) = 1$

Q 6.

JEE Mathematics – Functions

Let $A = \{1,2,3,4\}$. The number of functions $f: A \to A$ satisfying f(f(i)) = i for

all
$$1 \le i \le 4$$
 is

$$f(1) = 1,1 \to f(f(1)) = 1$$

$$f(1) = 2$$
 and $f(2) = 1 \rightarrow f(f(1)) = f(2) = 1$

$$f(1) = 3$$
 and $f(3) = 1 \rightarrow f(f(1)) = f(3) = 1$

$$f(1) = 4$$
 and $f(4) = 1 \rightarrow f(f(1)) = f(4) = 1$

$$f(2) = 2 \rightarrow f(f(2)) = f(2) = 2$$

$$f(2) = 3$$
 and $f(3) = 2 \rightarrow f(f(2)) = f(3) = 2$

$$f(2) = 4$$
 and $f(4) = 2 \rightarrow f(f(2)) = f(4) = 2$

$$f(3) = 3 \rightarrow f(f(3)) = f(3) = 3$$

$$f(3) = 4$$
 and $f(4) = 3 \rightarrow f(f(3)) = f(4) = 3$

$$f(4) = 4 \rightarrow f(f(4)) = f(4) = 4$$

Q 7.

JEE Mathematics – Functions

Let $f: \{1,2,3\} \rightarrow \{1,2,3\}$ be a function. If the number of functions

$$g: \{1,2,3\} \to \{1,2,3\}$$
 such that $f(x) = g(x)$ for at least one $x \in \{1,2,3\}$ is k ,

then
$$(k-10)$$
 is equal to

$$n(f:A \to B) = 3^3 = 27$$

$$n(g: B \to A) = 3^3 = 27$$

for every $i \in \{B\}$, 2 choices for g(i): the two numbers

Option 3: 8

that are different from f(i) i.e. $g(i) \neq f(i)$

Option 4: 17

: No. of functions f(i): $g(x) \neq f(x)$ is $2^3 = 8$

$$k = 19 - 10 = 9$$

f(x)

(1,2);(1,3)

Q 7.

JEE Mathematics – Functions

Let $f: \{1,2,3\} \rightarrow \{1,2,3\}$ be a function. If the number of functions $g: \{1,2,3\} \rightarrow \{1,2,3\}$ such that f(x) = g(x) for at least one $x \in \{1,2,3\}$ is k, then (k-10) is equal to

f(1)	1	1	2	1	3	1	f(10)	1	2	2	1	3	1	f(19)	1	3	2	1	3	1
f(2)	1	1	2	1	3	2	f(11)	1	2	2	1	3	2	f(20)	1	3	2	1	3	2
f(3)	1	1	2	1	3	3	f(12)	1	2	2	1	3	3	f(21)	1	3	2	1	3	3
f(4)	1	1	2	2	3	1	f(13)	1	2	2	2	3	1	f(22)	1	3	2	2	3	1
f(5)	1	1	2	2	3	2	f(14)	1	2	2	2	3	2	f(23)	1	3	2	2	3	2
f(6)	1	1	2	2	3	3	f(15)	1	2	2	2	3	3	f(24)	1	3	2	2	3	3
f(7)	1	1	2	3	3	1	f(16)	1	2	2	3	3	1	f(25)	1	3	2	3	3	1
f(8)	1	1	2	3	3	2	f(17)	1	2	2	3	3	2	f(26)	1	3	2	3	3	2
f(9)	1	1	2	3	3	3	f(18)	1	2	2	3	3	3	f(27)	1	3	2	3	3	3

```
f(1): {(1,3),(2,1),(3,1)}
                                   f(1): \{(1,2), (2,1), (3,1)\}
f(1): \{(1,1), (2,1), (3,1)\}
                                                                       f(2): {(1,3),(2,1),(3,2)}
                                    f(2): \{(1,2), (2,1), (3,2)\}
f(2): \{(1,1), (2,1), (3,2)\}
                                   f(3): \{(1,2), (2,1), (3,3)\}
                                                                       f(3): \{(1,3),(2,1),(3,3)\}
f(3): \{(1,1), (2,1), (3,3)\}
                                                                       f(4): \{(1,3), (2,2), (3,1)\}
                                   f(4): \{(1,2), (2,2), (3,1)\}
f(4): \{(1,1), (2,2), (3,1)\}
                                                                       f(5): \{(1,3), (2,2), (3,2)\}
f(5): \{(1,1),(2,2),(3,2)\}
                                   f(5): \{(1,2), (2,2), (3,2)\}
                                                                       f(6): \{(1,3), (2,2), (3,3)\}
                                   f(6): \{(1,2),(2,2),(3,3)\}
f(6): \{(1,1),(2,2),(3,3)\}
                                                                       f(7): {(1,3), (2,3), (3,1)}
                                   f(7): {(1, 2), (2, 3), (3, 1)}
f(7): {(1,1),(2,3),(3,1)}
                                                                       f(8): \{(1,3), (2,3), (3,2)\}
                                   f(8): \{(1,2),(2,3),(3,2)\}
f(8): \{(1,1),(2,3),(3,2)\}
                                                                       f(9): \{(1,3),(2,3),(3,3)\}
                                   f(9): \{(1,2),(2,3),(3,3)\}
f(9): \{(1,1), (2,3), (3,3)\}
```


Q 8.

JEE Mathematics – Functions

Let $f: (-2,2) \to (-2,2)$ be a continuous function such that $f(x) = f(x^2) \ \forall x \in d_f$

and
$$f(0) = \frac{1}{2}$$
, then the value of $4f\left(\frac{1}{4}\right)$ is equal to

$$f:(-2,2)\to(-2,2)$$

Option 1: 1

Option 2: 2

Option 3: 3

Option 4: $\frac{1}{2}$

$$f(0) = f(0^2) = \frac{1}{2}$$

$$f(1) = f(1^2) = f(-1)$$

$$f\left(\frac{1}{2}\right) = f\left(\frac{1}{4}\right) = f\left(-\frac{1}{2}\right)$$

$$f(i) is a constant function = \frac{1}{2}$$

$$\therefore 4f\left(\frac{1}{4}\right) = 4\left(\frac{1}{2}\right) = 2$$

Q 9.

JEE Mathematics – Functions

Let $A = \{x_1, x_2, x_3, x_4, x_5\}$, $B = \{y_1, y_2, y_3, y_4\}$. A function f is defined from A to B, such that $f(x_1) = y_1$ and $f(x_2) = y_2$. If the number of onto functions from A to B is n, then (n - 10) is

Option 1: 12

Option 2: 16

Option 3: 8

Option 4: 6

Onto function Range = $codomain B \rightarrow n(R) - 4$

$${}^{3}C_{2} 2! = \frac{3(2)}{1(2)} (2)(1) = 6$$

$${}^{3}C_{2}$$
 2! 2 = $\frac{3(2)}{1(2)}$ (2)(1)2 = 12

Total number of functions = 6 + 12 = 18

any 2 numbers from {3,4,5} and any 2 from {3,4}

Q 10.

JEE Mathematics – Functions

The area enclosed by the curve |x + y - 1| + |2x + y - 1| = 1 in sq.units is

Option 1: 2 | Option 2: 3 Option 3: 6 Option 4: 7

If
$$2x + y - 1$$
 is negative, tthen $(x + y - 1) - (2x + y - 1) = 1$ $\xrightarrow{1}$ $\xrightarrow{2}$ $\rightarrow x = 1$

If
$$x + y - 1$$
 is negative, t then $-(x + y - 1) + (2x + y - 1) = 1$ $\rightarrow x = -1$

If both are negative, tthen
$$-(x+y-1)-(2x+y-1)=1 \to \frac{x}{\frac{1}{3}} + \frac{y}{\frac{1}{2}} = 1$$

Required area =
$$\left(\frac{1}{2}(2)3\right) - \left(\frac{1}{2}\left(\frac{4}{3}\right)2\right) + \left(\frac{1}{2}(1)\frac{2}{3}\right) = 2 \text{ sq. units}$$

Q 11.

JEE Mathematics – Functions

Consider set $A = \{x_1, x_2, x_3, x_4, x_5\}; B = \{y_1, y_2, y_3\}$. Function f defined from A to B.

Find the number of onto functions from A to B such that $f(x_1) = y_1$.

$$A = \{x_1, x_2, x_3, x_4, x_5\}; B = \{y_1, y_2, y_3\}$$

case 1: If 2 elements go to y_1 from $\{x_2, x_3, x_4, x_5\}$

Option 1: 12

No. of functions:
$$n_1 = \frac{4!}{2! \ 1! \ 1! \ 2!} \ 3! = 36$$

case 2: If 2 elements go to y_2 and others go to y_3

Option 2: 16

No. of functions:
$$n_2 = \frac{4!}{2! \ 2!! \ 2!} \ 2! = 6$$

Option 3: 8

case 3: If 3 elements go to y_3 and one goes to y_3

Option 4: 6

No. of functions:
$$n_3 = \frac{4!}{3! \, 1!} \, 2! = 8$$

Total no..of functions: n = 36 + 6 + 8 = 50

Q 12.

JEE Mathematics – Functions

Consider set $A = \{x_1, x_2, x_3, x_4, x_5\}$; $B = \{y_1, y_2, y_3\}$. Function f defined from A to B.

Find the number of functions from A to B such that $f(x_1) = y_1$ and $f(x_2) \neq y_2$.

$$A = \{x_1, x_2, x_3, x_4, x_5\}; B = \{y_1, y_2, y_3\}$$

for x_1 , there is only one option.

for x_2 , there is only two options. y_1 or y_3

for x_3 , there is three options. y_1 , y_2 or y_3

for x_4 , there is three options, y_1 , y_2 or y_3

for x_5 , there is three options, y_1 , y_2 or y_3

Total no..of functions: n = 1(2)(3)(3)(3) = 54

Option 1: 64

Option 2: 54

Option 3: 27

Option 4: 81

Sets, Relations and Functions Summary

We have learnt

Sets and their representation

Union, Intersection, Complement

Power set

Relation, types of relations, equivalence relations

Functions, One-one, into, onto functions

Composition of functions

Thank you

Dr.RK